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An integral approach to lifting wing theory at Mach one* 
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S U M M A R Y  
An approach to lifting wing theory at Mach one is presented that utilizes an integral method similar to the 
Karman-Pohlhausen method in boundary layer theory. As in any integral method the results obtained are 
approximate in nature. Nonetheless, comparison with experimental data shows good agreement in cases 
for which experimental data are available. The method can easily be used to determine the lift on wings of 
finite aspect ratio and also to solve transient lifting problems. The method is demonstrated by solving for 
the pressure distribution on a lifting airfoil of arbitrary symmetric cross-section, the lift on a wing of rec- 
tangular planform, and the transient lift on an airfoil due to a sudden change in angle of attack. These cases 
were chosen to illustrate the versatility of the method and are not meant to be exhaustive of all possibilities. 
The computational time required to obtain numerical results is very small in all cases considered. 

List of symbols 

A p a r a m e t e r  associa ted  with Guder l ey  airfoil ,  defined in equa t ion  (28) 

A R  aspect  ra t io  

AR'  reduced  aspect  ra t io  = A R  z~(? + 1) ~ 

c chord  o f  airfoi l  

C~ sect ional  lift coefficient 

CL lift  coefficient 

Cp pressure  coefficient 

M M a c h  number  

p Laplace  t r ans fo rm var iable  

s span  o f  wing (in units  o f  c) 

t t ime (in units o f  c/U) 

U free s t ream veloci ty 

x s t reamwise coord ina te  (in units o f  c) 

x* dis tance f rom leading edge to sonic po in t  (in units  o f  c) 

y spanwise coord ina te  (in units o f  c) 

z coord ina te  n o r m a l  to  p lane  o f  wing (in units  o f  c) 

c~ angle o f  a t t ack  

=y/2s 

? ra t io  o f  specific heats  ( =  1.4 in all calculat ions)  
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6 penetration depth (in units of c) 
0 defi~aed in equation (13) 

x - ~  
thickness ratio of wing 

~b perturbation velocity potential (in units of c x U) 
4)0 perturbation velocity potential associated with thickness 
~b' perturbation velocity potential associated with lift 

1. Introduction 

In light of the requirement for a transonic transport it is clearly of great importance to be 
able to predict the steady and unsteady lift on airfoils and wings of finite aspect ratio at 
Mach one. The difficulty of devising a theory capable of determining lift in the transonic 
speed regime can be attributed to the inherently nonlinear nature of the transonic small 
disturbance flow equation and also to the fact that the equation is of mixed elliptic-hyper- 
bolic type. By considering the lift potential to be a small perturbation on the thickness 
potential, however, the transonic lift potential can be shown to satisfy a linear partial 
differential equation. Nevertheless, for M ~- 1, this equation will still be of the mixed 
type, and difficulties encountered in attempting to solve it have hitherto proved to be 
insurmountable except in certain special cases. Finite difference schemes in conjunction 
with high-speed digital computers have been used to determine the flow about two-dimen- 
sional airfoils (see, e.g., [1]). However, the computation time may be great, and although 
the techniques may be extensible in principle to two- or three-dimensional steady or un- 
steady lifting problems, the amount of computation time required to solve such problems 
may prove to be exorbitant. It is therefore desirable to have a simple approximate method 
available for determining the solution to such problems. Recently, Stahara and Spreiter [2] 
have proposed an extension of the method of local linearization to determine the lift 
distribution on transonic oscillating airfoils. It is not possible at this time to assess the 
accuracy of that theory since no transonic oscillating airfoil data exists with which to 
compare it. On the other hand, in the steady case comparisons can be made with data 
presented in [3] and [10]. More recently, a slightly different approach to the method of 
local linearization for steady lifting airfoils at subsonic speeds has been presented by 
Subramanian and Balakrishnan [4], and fairly good agreement with data presented in [3] 
at M --- .7 is demonstrated. 

This paper deals with a completely different approach to lifting transonic wing problems. 
The approach stems from the observation that at a free stream Mach number of one there 
is little upstream influence and as a consequence, an integral method, similar to the Karman- 
Pohlhausen method in boundary layer theory, can be used. The integral method reduces the 
problem to the solution of a boundary-value problem in the plane of the wing and the 
reduced problem can frequently be solved in a simple way. The method is applied here tO 
solve three different lifting problems: 1) the lift on a two-dimensional symmetrical airfoil 
of arbitrary cross-section at a small angle of attack; 2) the lift on a finite aspect-ratio wing 
of rectangular planform having an arbitrary symmetric airfoil section; 3) the transient lift 
on a two-dimensional Guderley airfoil (defined below) due to a sudden change in angle of 
attack. These three cases serve merely to illustrate the method and the first two are used to 
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verify the results of the method by comparison with appropriate experimental data. The 
method itself is completely general with regard to airfoil shape and planform shape; its 
basic limitations are that the angle of attack (and camber) must be small in comparison 
with the thickness ratio, that the Mach number must be close to one, and that the effects 
of viscosity are ignored. 

2. The boundary value problem 

The unsteady three-dimensional small disturbance transonic potential flow equation is 

(1 - MZ)~bx~ + q~, + q~ = M2(7 + 1)~bxq~x~ + 2M20~t + M2~tt. (1) 

It will be assumed either that shock waves are so weak that they are automatically accounted 
for by equation (1) or that all shock waves occur at the trailing edge of the wing. For 
M -- 1 equation (1) reduces to 

q~,, + ~bz~ = (7 + l)q~q~x~ + 2(gxt + 49,. (2) 

This will be taken to be the fundamental equation. It will now be assumed that the velocity 
potential can be split into two parts; the first part, due to thickness, will be denoted by ~b o, 
while the second part, due to lift, will be denoted by qS'. Upon substituting 

q~ = q~o(X, y, z) + q~'(x, y, z, t) (3) 

and retaining only linear terms in q~' there is obtained 

r + r = (? + 1)r162 

I ~'. + ~'zz = (~ + 1)[~oxr + ~;~0xx] + 2r + r 

(4) 

(5) 

Equation (5) may also be written 

O 
(6) 

It is assumed that the solution to the thickness problem is known, so that q~0 is given. 
In that case, equation (5) (or (6)) is a linear partial differential equation for ~b' whose 
solution is sought. 

The boundary condition for the lift potential on the upper surface of the wing for all 
cases to be considered is 

4 ; = ~ ,  z = o  (7) 

where e is the instantaneous angle of attack. At infinity the perturbation velocity potential 
as well as tile disturbance velocity components must vanish. 

The pressure coefficient can be obtained from the unsteady linearized Bernoulli equation. 
For thin wings this becomes 

cp = -2[,~" + ,p;]. (8) 
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3. The lifting airfoil at Mach one 

For a two-dimensional steady lifting airfoil equation (6) reduces to 

q~'zz = (V + 1) ~ (~b0xqV). (9) 

The integral method consists in assuming that the disturbance caused by the lifting foil 
penetrates into the flow only to a distance 5, called the penetration depth, and that for 
z < 5 the potential ~b' can be represented by a polynomial in z whose coefficients depend 
on x. Equation (9) is then multiplied by dz and integrated from z = 0 to z = 0% resulting 

in 

- a  = (y + 1)-~x ~ o ~ ' d z  (10) 

where the boundary condition, equation (7), has been applied and it is assumed that q~' 
and the disturbance velocity components vanish beyond z = 5. The solution that is sought 
will satisfy equation (10) rather than equation (9). The simplest polynomial for ~b' to satisfy 
is a linear distribution, and, in this case, the one that satisfies the boundary conditions is 

%'=-~(~-z), O < z < 5 ,  
(11) 

= 0 ,  z > 5 .  

The next step is to assume that the integral appearing in equation (10) can be evaluated 
sufficiently accurately if qSo~ is taken to be its value at the surface of the foil or, for a thin 
airfoil, at z = 0. In this case, qSox can be taken outside the integral. This will be a reasonable 
approximation provided the variation of ~bo~ is sufficiently slow over the interval 0 < z < 5. 
This will be confirmed subsequently.* Equation (10) then simplifies to 

- ~  -- (y + 1) ~b0x(x) (12) 

where 

0 = (o'dz (13) 
o 

whence, by virtue of equation (11), 

~62 
0 = - - - ,  (14) 

2 

equation (12) can be integrated twice with respect to x and the constants of integration 
determined by specifying that 0 must be regular at the point x* at which ~box vanishes and 
must vanish at the leading edge, x = 0. The point x* is, of  course, the sonic point on the 
airfoil as determined by the thickness distribution alone since the free stream velocity is 

* This assumption is tantamount to assuming that the coefficients in equation (5) are independent of z, an 
approximation that has been shown to be valid to the first order near the airfoil [5]. 
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sonic. The result is 

0 52 1 ~': ~ - x* 
- 2 y + 1 ~ ( ~  d~ (15) Jo 

Upon utilizing equations (8) and (11), there is finally obtained 

,/2(_x- x* 
C,(y + 1)+z + \ ~o~ ,/ 

- (16) 

where 

r = (~ + 1) ~ ~o,. (17) 

The lift (including both upper and lower surfaces of the foil) is seen from equations (8) and 
(11) to be 

Ci = 4~6(x = 1) (18) 

which, by virtue of equations (14) and (15), becomes 

- 4x/2 (19) 
O~ Ox 

It is to be noted that no Kutta condition is required in order to determine the lift uniquely. 
This is so because the rear part of the foil is in a supersonic flow field. The Kutta condition 
is replaced by the condition of regularity at the sonic point. Before continuing, a simplified 
version of the integral method will be introduced which is developed from equation (5) 
instead of equation (6). Since r  vanishes somewhere along the airfoil, namely at x = x*, 
it will be small everywhere over the airfoil, and hence the term r might be expected 
to be small in comparison with the term r162 The analysis obtained by ignoring this 
term altogether will be termed the simplified integral method. In this form the partial 
differential equation can easily be seen to be of  the diffusion type. Proceeding in the same 
way as before leads to a first order equation in 0 that replaces equation (12). The result is 

dO 
- ~  = (Y + 1)r176 dx" (20) 

The condition of regularity at the sonic point is no longer required, and the solution now 
becomes 

o _  6 2 _  1 [,x dr 
(21) 

2 r + 1 Jo r 

which replaces equation (15). The pressure coefficient and lift coefficient for the simplified 
integral method are identical to equations (16) and (19) respectively with (x - x*)/~ox 
replaced by 1/~ox=. It can be seen that for a linear variation of ~bo~ the two expressions 
are identical, and so, the simplified integral method can be viewed as the same as the 
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integral method with qSo~ replaced by its tangent at the sonic point. But the simplified 
integral method also provides insight into the assumption that ~bo, can be taken outside 
the integral in equation (10), for, according to equation (21), 

6z _ _ _ 2  f x  d~ 
+ 1 Jo ~o~x(~) 

and the multiplicative constant, 2, that appears is a direct result of the assumption that 
the profile is linear. On the other hand, it is shown in [6] that the thickness potential q~o 
can also be determined using an integral method, but that a quadratic profile is necessary, 
in which case the penetration depth for the thickness potential is identical to this expression 
except that the factor 2 is replaced by a factor 6. Hence, the penetration depth for the lift 
problem is l/x/3 times the penetration depth for the thickness problem which means that 
over the interval 0 < z < 6, 0o~ remains close to its surface value. The argument given 
here depends for its validity on the fact that the linear profile is appropriate for lift problems. 
It will be shown in the next section that this is the only profile that can be used to give the 
correct answer for a low aspect-ratio wing. 

Two examples of the above results will now be presented. Using the method of local 
linearization Spreiter and Alksne [7] have shown that for a parabolic arc profile whose 
coordinates are given by 

z = 2T(x - x z) (22) 

The streamwise perturbation velocity due to the thickness is given by 

~ox = (In 4x - 8x + 8x z + -}) . (23) 

The sonic point for this airfoil lies at x* = �88 A second class of airfoils, known as Guderley 
airfoils, have coordinates given by 

2 s  7, z = r~-x/~-'c(1 - x)x ~. (24) 

These airfoils are characterized by a constant surface pressure gradient near M = 1. The 
streamwise perturbation velocity due to thickness is given by 

125 F 97z ]~ 
= 

The sonic point for this airfoil lies at x* = -~. The lifting pressure distribution due to angle 
of attack at Mach one for a 6 percent thick parabolic arc airfoil is shown in Figure 1 using 
both the integral method and the simplified integral method. A comparison is also shown 
with the result obtained for the same airfoil using the method of local linearization [2]. 
Similarly, the pressure distribution due to angle of attack for the Guderley airfoil is shown 
in Figure 2. Since qS0x is linear for this airfoil the integral method and simplified integral 
method yield identical results. The pressure distribution for this airfoil using the method 
of local linearization [2] is also shown. 

It should be noted that the pressures due to angle of attack as obtained according to the 
methods developed in this paper are consistantly greater than those obtained using the 
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6.0 

integral method 

5.0 
simplified integral 
method 

local linearization 

4.0 

Cp/a 

3.0 

2.0  

1 .0  

\ 
\ 
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I T I 1 ,I 
.2 .4 .6 .8 1.0 

X 

Figure l. Pressure distribution on 6 ~ thick parabolic arc airfoil--a comparison of three theories. 

method of local linearization. In order to ascertain which of the methods yields superior 

results, a comparison with experiment is necessary. Such a comparison is shown in Figure 3 
where the data points were obtained f rom [3] for a lifting circular arc airfoil in th e following 
way: The pressure at zero angle of  attack was subtracted f rom the pressure at 2 ~ angle of  
attack for both upper and lower surfaces, this difference being the pressure due to angle of  

attack. Data  points are for a free stream Mach number 1.007. The vertical lines through 
the data points indicate the accuracy with which the points can be read from the graphs 

presented in [3]. The corresponding theoretical curves were obtained f rom Figure 1 for a 
parabolic arc airfoil, (It  should be noted that to the first order in thickness ratio a parabolic 
arc airfoil and a circular arc airfoil are the same.) From this comparison it can be seen that 
the simplified integral method gives the best fit to the data, the integral method gives an 
acceptable fit, but that the method of local linearization gives results that are consistantly 
low. 
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5.0- integral and simplified 
integral method 

local linearization 

4, -- 

3. 

" ~ "  ~ . . . ~ .  

1. ~ 

l I I I I 
0 .2 .4 .6 .8 1.0 

X 

Figure 2. Pressure distribution on 6% thick Guderley airfoil--a comparison of three theories. 

For the two airfoils considered the lift can be determined using the simplified integral 
equivalent of equation (19). For the parabolic arc profile this yields 

C~z~(7 + 1)~/e = 3.08 

while for the Guderley airfoil it yields 

Cz~(~ + 1)~/e = 2.72. 

For a 6 ~ thick parabolic arc profile at e = 2 ~ the theory yields Cz = .205 which agrees 
extremely well with the experimental values given in [3], namely Ct = .195 without a 
boundary layer trip and Ct = .215 with a boundary layer trip. For the same conditions the 
theoretical value of the moment coefficient about the midchord can be shown to be 
C,,.~ = .0148, while the data presented in [3] indicates C~., = .016 without a trip and 
Cm.~ = .023 with a trip. The difference in center of pressure location that comes about by 
using .0148 instead of .023 amounts to only 4% of the chord. 
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Figure 3. Comparison of experimental pressure distribution due to lift on 6 ~ thick circular arc airfoil at 
2 ~ angle of attack with three theoretical distributions. (Note: Vertical lines through data points indicate 
accuracy to which data in [3] can be read.) 

4. The lifting wing of  finite aspect ratio at Maeh  one 

Consider now a lifting wing of finite aspect ratio. For  this case equation (6) reduces to 

0 
q~'zz + q~y = (7 + 1 ) - ~ -  x (q~ox~b'). (26) 

Only a wing having a Guderley airfoil will be considered, in which case, upon integrating 
equation (26) with respect to z over the interval 0 < z < ~ and applying the boundary 
conditions there is obtained 

d 
- a  + 0yy = A dx [(x - {)0x] (27) 
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where 0 is defined by equation (13) and, from equations (17) and (25), 

125 r g n ]  ~ 
A = z~(~ + 1) ~ 24 L 50_1 " (28) 

Here the thickness velocity q$o~ has been assumed to be determined using a strip theory 
so that the dependence of ~o~ on y is ignored. The effect of this assumption will be discussed 
subsequently. Now, equation (27) is a partial differential equation which must be satisfied 
in the plane of the wing (z = 0) in the domain defined by the periphery of the wing. On the 
other hand, in the same plane but to port or starboard of the domain qS' = 0; hence, 
according to equation (11), 6 = 0 outside the domain, and thus, by virtue of equation (14), 
0 = 0. It is not necessary to consider the wake of the wing since the aft part of the wing 
is in a supersonic zone. Thus, for a wing of rectangular planform the boundary conditions 
that equation (27) must satisfy are: 

0(0, y) = 0 (leading edge condition) 

O(x, _+ s) = 0 (tip condition) (29) 

0({, y) = regular (condition of regularity at sonic point) 

Since it is only necessary to consider the domain of the wing, the constant angle of attack 
can be expanded in a Fourier series in the interval - s  < y < s, in which case equation 
(27) becomes 

4~ 
Z cos + 0~, = A - - ~  ~ (30) 

7g n=1,3 n 

where 

= x - ~. (31) 

Expanding 0 in a Fourier series: 

co n~y 
0 =  E L ( ~ ) c o s  

n= 1,3 2S 

which automatically satisfies the tip boundary conditions, the following ordinary differ- 
ential equation for f ,  is obtained: 

d ( df,'~ / n n \  2 4~( - )  ("-1)/z (32) 

This can be recognized as a nonhomogeneous Bessel equation. The solution that satisfies 
the leading edge condition and the condition of regularity finally yields the following 
solution for 0: 

/ l 0 = Z l ]\-~U/ (_)(.-1)/2 c o s -  
.=1,3 nn 2s I {nn / 2 "~ - 1  , (33a) 

W 
- I  < ~ < 0 (upstream of sonic point) 
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where Io is a modified Bessel function of the first kind, and 

0 = Z I',-~-~/ (_ )~ . - . 12  cos - -  
n = 1,3 ritz 2s i { n =  / 2 , ~  1 ,  

Ot, s 

(33b) 

0 < ~ < ~ (downstream of sonic point) 

where Jo is a Bessel function of the first kind. 
Equation (8), (11) and (14) may again be applied to obtain an expression for the pressure 

coefficient. This will not be given explicitly, but the results are shown in a three-dimensional 
diagram in Figure 4 for a wing having a six percent thick airfoil and an aspect ratio of 6. 
The sectional lift coefficient (accounting for both upper and lower surfaces of the wing) 
according to equation (8) and (11) is given by: 

C, = 4~(x = 1) = 4~6(x = 1). (34) 

Hence, utilizing equation (33b) there is obtained for the total lift 

- T I ~ .=,,~ n ~ cos n~ 

where fl = rcy/2s. 

3 . 0  4 

a 

2 . 0  s 

o i 

J 
. /  

J 
/ 

I 

/ /  

/ I  
J 

Figure 4. Spanwise pressure distribution on aspect ratio 6 rectangular wing having 6 ~  thick Gnderley 
airfoil section. 
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In the limit of small aspect ratio s ~ 0, and the ratio of the Bessel functions approaches 
zero. The resulting series can be summed (see [8], series # 528) yielding, 

* ~2 Jo ~ 4  t2 dfl (36) 

which shows that the spanwise lift distribution is elliptic and independent of A. Further- 
more, upon evaluating the integral there is obtained 

CL zcAR 
- -  -* szc - (37) 

2 

which is the well-known result of slender-body theory. 
Two points may now be made. In the first place, if a profile other than the linear profile 

had been used in setting up the integral method, the spanwise lift distribution would have 
still been elliptic in the limit of small aspect ratio, but the total lift would have differed 
from the correct slender-body result. Thus, the linear profile appears to be the most 
appropriate one to use. Secondly, as has been known for some time, the lifting properties 
of slender wings can be determined at Mach one using slender-body theory, and in this 
limit the lifting properties are independent of the thickness distribution of the airfoil. This 
is confirmed by equation (36) since the result is independent of A. Thus, for small aspect 
ratio wings it is not necessary to have any information at all concerning ~b0x, the streamwise 
perturbation velocity due to thickness, while for large aspect ratio wings it is essential to 
know ~0x. But for large aspect ratio whings ~bo~ is given, to a good approximation, by its 
two-dimensional value, and as the aspect ratio gets smaller and smaller the fact that a two- 
dimensional q~ox is used becomes less and less important. This is the justification for using 
the two-dimensional value of ~bo~ in setting up equation (27). Moreover, computations 
using a finite difference procedure indicate that q~0x varies very little from the root to the 
tip of a rectangular wing [9]. 

Returning now to equation (35), the integrand represents the spanwise lift distribution, 
an example of which is shown in Figure 5 for a wing having a six percent thick airfoil and 
an aspect ratio of 6. Finally, similarity parameters can be introduced according to the 
following scheme: 

s ~ AR/2, AR'  ~ ARz+(~ + 1) ~, A ~ - -  

CL CL~+(? + 1) ~ 

125 (9rc'~ ~ 
24 \-frO-] = 4.30698, 

(38) 

The lift as a function of reduced aspect ratio is shown in Figure 6. It is seen that, as expected, 
the plot is tangent to the result obtained using slender-body theory for small aspect ratios 
and asymptotically approaches the result of two-dimensional theory at high aspect ratios. 

The simplified integral method could have been used to solve the same problem. In that 
case, equation (27) would be replaced by 

d0 
= (39) --0~ = Oyy A t?x 
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2.5 

2.0 

1.5 

1.0 

I I I I 
.2 .4 .6 .~ 

y/s 
1.0 

Figure 5. Spanwise sectional lift distribution on an aspect ratio 6 rectangular wing having 6 ~ thick Guder- 
ley airfoil section. 

35[__ 
3.0 two-dlmenslonal result 

CLTI~ (.y+'W) V3 2~ 
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Figure 6. Lift coefficient as a function of reduced aspect ratio for a rectangular wing having a Guderley 
airfoil section. 
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and the method yields the following solution for 0: 

~~ 4 ~ ( 2 s ) 2  nzcy[ { l(m'c'~2x~ ] 
0 = • (_)(.-a)/2 cos exp -- -- 1 (40) 

n=l ,3  nn \ nzc ] 2s A ~ 2s ] J 

giving rise to the following expression for the total lift: 

C L _  32s f �89 ~ (_)(,-1)/2 I { l (nrc~2~l~ 
n2 do t -~-.= 1,a n a cos nfl 1 - exp - A \ 2s ] J J J  dfl (41) 

in place of equation (35). As is known, the simplified integral method yields results that are 
identical to the results obtained using the integral method for a two-dimensional Guderley 
airfoil. Both methods reduce to the result of slender-body theory at the low aspect ratio 
end. It has been ascertained by numerically evaluating equation (41) that the results 
obtained using either method cannot be distinguished for intermediate aspect ratios. 

But the result of the simplified integral method is much more significant than at first 
appears because it is, in fact, the solution for a wing of rectangular planform having an 
arbitrary wing selection. This can be seen from equation (5) by ignoring the term q~ox~b'xx 
and assuming ~box ~ depends solely on x. Then upon letting 

t f l d x  (42) 
X =  (Y + 1---~ ~b0~ x " 

Equation (5) reduces to 

~ '  
q~' + ~b'= - . (43) 

~Y 3X 

Hence, upon integrating over the interval 0 < z < 3, it is found that 

O0 
- ~  + 0rY - 3 X  (44)  

which is identical to equation (39) with x/A replaced by X. Thus the solution for a wing 
of rectangular planform having an arbitrary airfoil section is given by equation (40) with 
this replacement, and the total lift is given by equation (41) with 1/A replaced by 

(~ + 1) ~o~ 

It can be seen that once $o~  is specified for the airfoil, the lift on a finite wing of rectangular 
planform can immediately be determined. 

This approach has been used to determine the lift distribution on an aspect ratio 3 rec- 
tangular wing having a 5 ~ thick biconvex airfoil section at an angle of attack of  5 ~ 
Equation (23) was used for the sectional velocity. Then, upon combining equations (8), 
(14), and (40) with the replacement given above, sectional pressure distributions were 
calculated. Comparisons with the experimental data presented in [10] are shown in Figure 7 
at four spanwise stations. It can be seen at a glance that the theoretical results at the 0.5, 
0.7 and 0.9 spanwise stations agree extremely well with the data. The agreement at the 
0.0 station (midspan) is not so good. However, the experiments were performed using a half 
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Figure 7. Comparison of experimental pressure distribution due to lift on rectangular wing of aspect ratio 3 
having 5 % thick biconvex airfoil section at 5 ~ angle of attack with theoretical distribution at four spanwise 
stations. Experimental data from reference [10]. 

wing mounted on the wall of a wind tunnel and as a consequence the wall boundary layer 
is likely to have created interference causing the measured pressures at midspan to differ 
from the pressures on a full-span wing. Moreover, the pressure distribution at midspan 
should closely resemble a two-dimensional distribution, which the theoretical distribution 
does but not the experimental distribution. Because of these considerations it is likely 
that the theoretical distribution at midspan is more nearly correct than the experimental 
distribution. 

It is worth noting that all the calculated data displayed on Figure 7 was generated in 
1.6 seconds on the CDC 6600~ No other method is known that can perform the required 
computations so rapidly. Furthermore, although the theory was developed under the 
assumption that the angle of attack is small in comparison with the thickness ratio, the case 
chosen for comparison violates this assumption and gives excellent agreement with the data 
nonetheless. This would seem to indicate that the theory is valid over a greater range of 
thickness ratios and angles of attack than might have been expected. 

5. Transient lift due to sudden change in angle of  attack at Maeh one 

The last problem that will be considered is the transient lift on a two-dimensional airfoil 
due to a sudden change in angle of attack at M ~- I. Such a solution is required in order 
to determine the gust response of the foil, Also, by Fourier analyzing this solution the lift 
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on an oscillating airfoil may be determined for use i n  solving flutter problems. For this 
problem only the simplified integral method will be considered. Upon applying the method 
in the usual way, equation (5) becomes 

- a  l(t) = (7 + 1)~bo,,,,O~ + 2Gt +Ott (45) 

where l(t) is the unit step function. Upon taking the Laplace transform with respect to 
time, there is obtained 

P 
- (7 + 1)q~ox~0:, + 2pOx + P 20 (46) 

where p is the Laplace transform variable. The solution that satisfies the condition 0(0) = 0, 
is 

~ dx 
0 = - exp . 25- 1 _p2 (47) 

P . o (V + 1)qSo~ + 2p 

For an arbitrary airfoil the indicated integration as well as the Laplace inversion would 
have to be carried out numerically. But for a Guderley airfoil both operations can be 
carried out analytically, and attention will be confined to this case. For the Guderley airfoil, 
(7 + 1)q~oxx ---- A, which is defined in equation (28), and equation (47) reduces to 

- = 1 - e x p  . p3 (48) 
- ~  2 

Let 

exp (A /2  + p ]  
f(p; x) = (49) 

A/2 + p 

Then, it can be shown, using tables of Laplace transforms (e.g., [11]), that f (p;  x) inverts to 

f ( t ; x ) = e - a / 2 ( t - X ) d o [ A { 2 ( t _  x ~  ~] 
I' 

= O, 

x 
t > = ~ ,  

x 
t < -~, 

(50) 

where J0 is a Bessel function of the first kind. 
Since lip means integration, the solution can then be determined by solving the following 

set of ordinary differential equations: 

dyl _ �89 x), dy~ dy3 at ~ = 1 - f ( t ;  x) - Ay  1, ~ = Y2 (51) 

with initial conditions yl(0, x) = y2(0, x) = y3(0, x) = 0. 
By integrating over the infinite interval it is not difficult to show, using a table of Laplace 

transforms, that in the limit as t ~ ~ ,  Yl ~ 1/A, Y2 ~ O, Y3 --* x/A. Furthermore, it is 
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possible to establish the following identifications: 

a(ol- oO a(Ol- ~) 
Yt = 0X , Y2 ~ ~3t , Y3 = (0/--C~). (52) 

Thus, the pressure coefficient becomes 

C,l~ = ~ [Yl + Y2] (53) 

while the lift (including upper and lower surfaces of  the foil) becomes 

. (54) 

Now it is easy to see that for t < x/2 

Yl -- O, Y2 = t, Y3 = t2/2. (55) 

Hence, at t = 0 the pressure distribution is uniform and the lift instantaneously jumps to 
the value* 

C t  (t = O) = 4. (56) 

An attempt was made to integrate equations (51) numerically; however, it was found 

that because there is no inherent feedback in the equations it was impossible to drive Y2 
to zero for large time, and, instead, Ya appeared to drift upward at a rate that depended 
on the integration step size. The problem was resolved by casting equation (50) into a form 

such that the integrations could be performed analytically. By using the identity, 

(xz)_~aeZJa[2(xz)~] = ~ L~(x)z" 
,=o F ( n + a +  1) 

(57) 

which is given in Section 10.12 of  [12], the funct ionf( t ;  x) can be shown to be represented 
by an infinite sum: 

L ~ t - -  
f ( t ; x ) =  e -a/2(t-x/2) E 2 , / J \  4 ' /  , t >  x 

. =  o n ! = T '  (58 )  

x 
= 0 ,  t < - - .  

2 

Here L"n(x) is a generalized Laguerre polynomial that satisfies the recursion relationship 

(n + 1)L~+l(x) - (2n + a + 1 - x)L",(x) + (n + a)L",_l(x) = 0 (59) 

* This result is identical with the initial lift and pressure distribution obtained using linearized theory at 
both subsonic and supersonic speeds. 
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with the initial conditions 

L g ( x )  = 1, L ~ ( x )  = a + 1 - x .  (60) 

By integrating over the infinite interval, making use of the limiting results, and subtracting 
away the integral from t to infinity it can be shown that 

Y' =-A ll  -e-a/2(t-~/2)n~--o[4-) n, ' 

Y2 = A e 
t l = l  n! 

(61) 

Y3 = - ~  1 - e -A/2(t-x/2) ~ 
n = l  n [  

x 

t >  2 '  

where use has been made of the identities, given in [12], 

ff e - r L ~ ( y ) d y  = e -~ [La (x )  - L .  ~-  l (x)] ,  (62) 

l (x )  = Z (x) - L a_ l(x) .  (63) 
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Figure 8. Transient lift response of  a Guderley airfoil due to a sudden change in angle of  attack. 
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Numerical  evaluation shows that  the series converge very rapidly for  all values o f  t > x/2. 

The lift response was calculated using equat ion (54), where the integral was evaluated using 

the trapezoid rule. Results are shown in Figure 8. I t  is interesting to observe that  the lift 

coefficient initially jumps  to 4c~, and eventually reaches 4e(2/A) ~. Thus, for A = 2 the 

initial and final values o f  the lift are identical though  the pressure distributions are com- 

pletely different. This case corresponds to a thickness ratio o f  approximately z = .13. 

Of  course, thickness ratios greater than 13 % are not  likely to be encountered in practice. 

Transient  lift growth is illustrated in Figure 8 for  several values o f  z. I t  can be seen that  the 

time for  C~/c~ to reach its steady state value is very short  for  the thicker foils, being less 

than the time to travel two chord lengths for -c = .15. 

6. Conclusions 

An integral approach  to lifting wing theory at Mach  number  one has been developed and 

has been applied to solve three problems:  1) the lift on an airfoil section of  arbitrary cross 

section at angle o f  a t tack;  2) the lift on a wing of  rectangular p lanform at angle o f  at tack;  

3) the transient lift on a Guderley airfoil due to a sudden change in angle o f  attack. For  the 

first and second problems some experimental data is available and agrees well with the 
theory. Fo r  the third problem no experimental data  seems to be available with which to 

make comparisons.  All computa t ions  were carried out on a C D C  6600. The amount  o f  

computa t ion  time required in all cases was a few seconds, a feature of  the present approach  

that  is certainly o f  some significance. 
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